Python For Data Science

Python for Data Science
Python Online training is designed to make students familiar with the concepts, tools and programming skills which will be used for Data science main course. The Concepts includes Introduction to PythonPython for Data ScienceData Visualization in Python, Data Analysis using SQL and Math for Data Analysis 






What does the course cover?

Python and Math for Data Science course include five modules which are divided into multiple sessions and sub-sessions depends on the complexity of concept:

Module 1: Introduction to Python

Session 1: Data Structures in Python

1.1: Inrtoduction_installtion of Python and NoteBook
1.2: Basics
1.3: Lists
1.4: Tuples
1.5: Dictionaries
1.6: Sets

Session 2: Control Structures and Functions

2.1: If, else, if-else
2.2: Loops
2.3: List, Dictionary comprehensions
2.4: Functions
2.5: Map, Filter and Reduce

Module 2: Python for Data Science

Session 1: Introduction to NumPy

1.1-NumPy Basics
1.2-Creating NumPy Arrays
1.3-Structure and Content of Arrays
1.4-Subset, Slice, Index, and Iterate through Arrays
1.5-Multidimensional Arrays
1.6-Computation Times in NumPy and Standard Python Lists

Session 2: Operations on NumPy Arrays

2.1-Basic Operations
2.2-Operations on Arrays
2.3-Basic Linear Algebra Operations

Session 3: Introduction to Pandas

3.1-Pandas Basics
3.2-Indexing and Selecting Data
3.3-Merge and Append
3.4-Grouping and Summarizing Data frames
3.5-Lambda function & Pivot tables

Session 4: Getting and Cleaning Data

4.1-Reading Delimited and Relational Databases
4.2-Reading Data From Websites
4.3-Getting Data From APIs
4.4-Reading Data From PDF Files
4.5-Cleaning Datasets

Module 3: Data Visualisation in Python

Session 1: Basics of Visualisation

1.1-Data Visualisation Toolkit
1.2-Components of a Plot
1.3-Sub-Plots
1.4-Functionalities of Plots

Session 2: Plotting Data Distributions

2.1-Univariate Distributions
2.2-Univariate Distributions – Rug Plots
2.3-Bivariate Distributions
2.4-5-Bivariate Distributions – Plotting Pairwise Relationships

Session 3: Plotting Categorical and Time-Series Data

3.1-Plotting Distributions Across Categories
3.2-Plotting Aggregate Values Across Categories
3.3-Time Series Data

Module 4: Data Analysis using SQL

Session 1: Basics of SQL

1.1-An introduction to RDBMS and SQL
1.2-Basics of SQL
1.3-Data Retrieval with SQL
1.4-Compound Functions and Relational Operators
1.5-Pattern Matching with Wildcards
1.6-Basics of Sorting
1.7-Session Summary

Session 2: Advanced SQL

2.1-Order by Clause
2.2-Aggregate Functions
2.3-Group by Clause
2.4-Having Clause
2.5-Nested Queries
2.6-Inner Join
2.7-Multi-Join
2.8-Outer Join

Session 3: SQL Practice Questions

3.1-SQL Practice

Module 5: Math for Data Analysis

Session 1: Vectors and Vector Spaces

1.1-Introduction to Linear Algebra
1.2-Vectors The Basics
1.3-Vector Operations
1.4-Vector Spaces

Session 2: Linear Transformation And Matrices

2.1-Matrices The Basics
2.2-Matrix Operations
2.3-Representing Linear Transformations As Matrices
2.4-Linear Independence
2.5-Determinants
2.6-Inverse of a Matrix
2.7-Hands-on Exercises on Linear Transformations

Session 3: Eigenvalues And Eigenvectors

3.1-Eigenvectors What Are They
3.2-Calculating Eigenvalues
3.3-Application of Eigenvalues and Eigenvectors


More Details: